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Abstract

An improved method has been proposed to eliminate the indeterminacies of independent component analysis (ICA) for chemomet-
rics. Following the arrangement of principal components analysis (PCA), the ICA mixing matrix is selected as signal content indexes,
and ICA output are sorted and directed. After many times reputations, independent components (ICs) are paired according to the
maximum correlation coefficient, and then the mean values of each IC substitutes the original ICs. This indicates that the ICA inde-
terminacies are eliminated. A simulation example is tested to validate this improvement. Finally, a set of experimental LC–MS data is
processed without any prior knowledge or specific limitation and the results show that the improved ICA can directly separate the
mixed signals in chemometrics, and it is simpler and more reasonable than the simple to use interactive self-modeling mixture analysis
(SIMPLISMA).
� 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

Independent component analysis (ICA) has been
regarded as one of the most important algorithms to deal
with blind source separation (BSS) because it can extract
the profile of latent components from the composite signals
[1–2]. This method has been used to separate independent
signal from mixed multi-component signals in the area of
chemometrics, such as simultaneously determination in
multi-components system [3], signal purification and over-
lap spectrogram resolution [4–5].

In ICA calculation, there are the threefold indetermi-
nacy of permutation, sign and shape [6]: (1) permutation
indeterminacy: it is random in nature that the order of

independent components (ICs) relates to the size of inde-
pendent criterion; (2) sign indeterminacy: each output com-
ponent phase is indefinite, i.e., the component phase is
completely random in the normal or opposite position;
and (3) shape indeterminacy: this kind of indeterminacy
includes random error based on seeking optimization, sys-
tematic error resulted from the non-orthogonal of original
sources, and indefinitely corresponding error between out-
put and original component if the output component num-
ber is inconsistent with the original component number. In
ICA applications, the troubles caused by these indetermi-
nacies include the rearrangement of all the output compo-
nents after each calculation, difficulty for dealing with the
relationship between output and original components,
and occasional accidents from great errors. The aim of this
study is to propose an improved algorithm to eliminate the
above indeterminacies in ICA for chemometrics.
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2. ICA indeterminacies

In BSS, the simplest and the most frequently considered
mixing model is in a linear form [7]:

x ¼ As ð1Þ
where x = [x1,. . .,xm]T and s = [s1,. . .,sn]T are the vectors

of the measured and source signals, respectively. A is an
unknown m � n mixing matrix. As premise ICA definition,
there exists only one criterion for estimating components,
i.e., each element in s is statistically independent. However,
it is difficult to eliminate the indeterminacies without any
prior knowledge [8] as s in Eq. (1) has 2n! permutation
ways.

In fact, except for the ICs arrangement, how to maintain
the ICs shape uniformity and mixing matrix determinacy
are also two key issues while ICA would be used in more
widespread fields, i.e., in the occasions where each source
signal is nonorthogonal mutually. Accordingly, this section
is focused on ICA indeterminacies and the solution to these
key problems. The causes of ICs indefinite errors are first
discussed in Section 2.1. Then, the scheme of accurate pair-
ing and predefined arrangement of the ICs containing
indefinite errors are shown in Sections 2.2 and 2.3, and
the method to eliminate the ICA indeterminacies is finally
presented in Sections 2.4 and 2.5.

2.1. Indefinite errors

The ICs indeterminacies of permutation and sign can be
processed artificially according to prior knowledge when
data quantity is limited. When ICA is used in the area of
chemometrics, however, the ICs indeterminacy of shape
must be paid more attention because it directly affects the
feasibility and accuracy of the quantitative analysis. As it
is known that the mixing matrix A in Eq. (1) represents
the contribution of source signals in the overall system
[9], this matrix is still indefinite resulting from the shape
indeterminacy although the amplitudes of ICs are normal-
ized in ICA methods [1]. It should be noticed that the insta-
bility of the matrix A is remarkable. Therefore, this matrix
cannot be used directly for quantitative analysis.

Each IC is corresponding to each source signal in the
data space. Fig. 1 shows their relations in the two-dimen-
sional space. The components must be orthogonal if they
are independent to each other according to the definition
of statistical independence. Because of ICs orthogonality,
ICs superpose on source signals if the source signals are
statistical independence. Otherwise, the vector of the
source signal will keep a fixed deviation of least square with
that of IC.

For binary-component system, there are four possible
combinations:

ICa ¼ a0 � b00 and ICb ¼ b0 � a00 ð2Þ
The randomness of ‘‘+” or ‘‘�” in Eq. (2) results in the ICs
indeterminacies of shape and range.

If there are n components in the system, the ICs will
have 2(n�1)n possible combinations. ~s, the set of ICs can
be expressed as

~s ¼ s0 þ esys þ erand ð3Þ

where s0 is the projection of source signals on ICs corre-
sponding to ~s, esys and erand represent systematic and ran-
dom errors, respectively.

esys is caused by the random possible combinations. ICA
is an algorithm based on seeking optimization, so there are
random errors (erand). When source signals do not meet the
statistical independence, the size and direction of esys are
dependent on the deviation of source signal away from
the statistical independence, and the randomness of esys is
limited within 2(n�1)n possibilities. Both esys and erand

errors can be eliminated
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where p is the repetition times. ICA indeterminacies can be
eliminated by many times ICA repetitions, but ICs always
deviate from real sources while the sources are not
orthogonal.

2.2. Definitive arrangement of independent components

The ICs must be accurately paired in order to obtain
automatically a set of reliable mean values of ICs from
many times repetitions, and the sign of ICs must be also
fixed. In principal component analysis (PCA), there are
two natural criteria which keep arranging and pairing the

Fig. 1. The relations of ICs and source signals in the two dimensional
space. a and b represent for the source vectors, and ICa and ICb for their
corresponding ICA vectors. a0 (or b0) is the projection of a (or b) on ICa
(or ICb), whilst a00 (or b00) is projection of a (or b) on ICb (or ICa). The
direction of IC may be positive or negative in random. ICa is signed as ICa
(+), i.e., ICa (+) = a0 + b00, when ICa synchronizes with a. Otherwise, ICa
is signed as ICa (�), i.e., ICa (�) = a0 � b00.
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components without indeterminacies, one of which is that
the covariance matrix eigenvalues are not less than zero,
and the other is that the arrangement of principal compo-
nents descends along the covariance matrix eigenvalues
sequence. The proportion of principal components in the
whole system decreases with decreasing the sequence of
the covariance matrix eigenvalues. However, such natural
criteria do not exist in ICA, which leads to the indetermi-
nacies of ICs arrangement. Followed by PCA, one stable
characteristic can be obtained and used as a criterion for
regulating arrangement and direction of components in
ICA. Therefore, Eq. (1) may be written as

xiji2m ¼
Xn

j¼1

aijsjjj2n ð5Þ

where aij is an element of A, which means ‘‘the content” of
the jth source in the ith observed value [9]. aij will remain
nonnegative if the signals maintain the behavior of additiv-
ity, which is commonly accepted in chemometrics. As
shown in Eq. (5), xi is confirmable and the sign of sj is fixed
once confirming the sign of aij. In Eq. (1), the jth row in the
matrix A corresponds to the jth column in the set of ICs, s.
Because aij is nonnegative, sign of aij is dictated as

Xm

j¼1

ðaiÞj P 0 ð6Þ

In this situation, the sign of sj is confirmed.
In PCA, the more fronted component contributes more

to the whole system than behind those. By analogy, the
mixing matrix A is a content scale of the source within
whole system in ICA. The contributions of ICs or source
components are also scaled by the distribution of each ele-
ment in the matrix A. The sum of squares of each row in
the matrix A is written as

SS ¼
Xm

i¼1

ða2
i Þj ð7Þ

The larger SS value represents the more contribution from
its corresponding IC. Therefore, Eqs. (6) and (7) may be se-
lected as predefined criteria for arranging and identifying
the ICA output.

2.3. Accurate pairing of independent components

The pairing of ICs based on the mixing matrix A of
each repetition is not always trusty, therefore, a constant
criterion must be reselected for the pairing of ICs. Sample
signal, x, is decomposed into two parts by ICA, one of
which is the mixing matrix A and the other is ~s. Gener-
ally, ~s has a greater amount of information than A, thus
the pairing of ICs based on ~s is more accurate than that
based on A.

Let ~sð1Þ and ~sð2Þ be, respectively, two ICA repetitions out-
puts. After standardization processing, their correlation
coefficient is

rkl ¼
1

n� 1
covð~sð1Þk ~sð2Þl Þ

¼ 1

n� 1
cov½ðsð1Þk þ eð1Þk Þðs

ð2Þ
l þ eð2Þl Þ�

¼ 1

n� 1
½covðsð1Þk sð2Þl Þ þ covðsð1Þk eð2Þl Þ þ covðsð2Þl eð1Þk Þ

þ covðeð1Þk eð2Þl Þ� ð8Þ

If ||s|| > ||e||, only when sð1Þk ¼ �sð2Þl , |rkl| is maximum.
Therefore, the maximum correlation is a criterion for

pairing the components between each ICA repetitions.
For some special occasions of stable and random ICs,
Eq. (8) approaches to zero, which suggests that compo-
nents pairing is invalid based on the correlation coefficient.
So these stable and random variables need to be tagged
before ICs pairing.

2.4. Tagging stable and random components

In PCA, principal components in the front of arrange-
ment have described the most characteristics of the sys-
tem, whilst the rest is regarded as noise. In ICA, stable
and random components are possibly arranged at the
front position if the system has more noise and compo-
nents are arranged in the matrix A, which leads to the
pairing ICs invalid based on the criterion of the maxi-
mum correlation. This implies that these components
need to be tagged and then put in the end of
arrangement.

Can stable component be judged by the autocorrela-
tion of time series? In entirely random time series, the
autocorrelation value, R, equals to 0 when the number
of sample points is close to infinite, whilst the number
of sample points, p, is limited, R � N (0,p�1), |R| <
4p�1/2 may be selected as a criterion for assessing the
stable component.

2.5. The method for arranging and pairing independent
components

Following the aforementioned discussion, we propose a
method for arranging and pairing independent compo-
nents. The details of the method can be summarized as
the following three steps:

First step (preliminary arrangement):

1. conducting ICA for the sample data to obtain the inde-
pendent components and the mixing matrix A;

2. arranging and directing the independent components in
the first time calculation on the basis of the mixing
matrix A;

3. computing autocorrelation values of ICs;
4. estimating whether there are stable components in ICs

or not; and
5. putting the stable components into the end positions of

ICs arrangement.

Z. Yao et al. / Progress in Natural Science 18 (2008) 1009–1014 1011



Second step (repeating computation):

1. repeating ICA and obtaining ICs;
2. tagging the stable components, and then putting them

into the end of the arrangement or abandoning them
from the ICs;

3. pairing these effective components with the preliminary
output; and

4. repeating for adequate times, and attaining the mean
value of each IC as a verified IC.

Third step (final arrangement):

1. regressing a new mixing matrix from the verified ICs,
this new matrix is determinate, i.e., its indeterminacies
have been eliminated;

2. rearranging the ICs based on this new matrix; and
3. outputting verified matrix A and a set of ICs, s.

3. Case study

3.1. Simulation data set

A set of simulation data for binary-component over-
lapped chromatograph signals (see Fig. 2) was used to con-
firm the determinacy of the algorithm in this study. As
shown in Fig. 3, it is obviously that single FastICA [2] cal-
culation deviates from the real source signals (true value),
which is indeterminate in each calculation. In the mean-
time, each deviation of single calculations is also obvious
and indeterminate (see Fig. 4), which indicates the columns
of the mixing matrix A and the real content of source
signals.

In order to check the reliability of the improved method,
10,000 times repetitions have been processed and each of
repetitions has not any mistake in pairing and identifying

ICs without manual intervention. Algorithm determinacy
can be represented by the interval of correlation coefficients
of ICA output. For this set of simulated data, the interval
is (0.94, 0.99) by normal ICA method, whilst the interval,
respectively, becomes (0.997, 1) or (0.999, 1) after 10 or
100 times repetitions by this improved ICA method. These
results indicate that the improved ICA can eliminate the
threefold indeterminacy of permutation, sign and shape.

This improved method not only eliminates ICA indeter-
minacies but also reduces the errors caused by the mutual
influence of components because the maximum correlation
coefficient between source and normal ICA output is
0.9978, while the correlation coefficient between source
and improved output is up to 0.9997; and because by the
normal ICA the minimum and maximum relative errors
of ‘‘content” are 1.8% and 15%, respectively, but the rela-
tive error decreases to 1.6% by the improved ICA. These
results indicate that accuracy of the improved ICA method
also meets the requirement of quantitative analysis.

3.2. Experimental data set

Phalp et al. [10] used simple to use interactive self-mod-
eling mixture analysis (SIMPLISMA) to purify mass

Fig. 2. Composite signals mixed with different contents of binary-source
signals.

Fig. 3. Binary-source signals and ICs via FastICA.

Fig. 4. Contents of binary-source signals and the rows of the mixing
matrix of ICA.
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spectra from LC–MS spectrograms of mixture, and to sep-
arate the overlapped chromatograph peaks. Without
selecting the purity curve, the improved ICA method can
also be used to process the data set used by Phalp et al.
[10]. The purified mass spectra and separated chromato-
graph peaks are directly worked out by the improved
ICA, and its output is determinate. The above results for
three components are in fair agreement with those of the

reference spectra as shown in Fig. 5, which shows that
the improved ICA neither needs prior knowledge nor has
any limitation to sample data comparing with the
SIMPLISMA.

It is disappointing that the mass spectrum of the fourth
component could not be found out in the paper by Phalp et
al. [10] and the component D could not be directly deter-
mined by the SIMPLISMA method. The argument was

Fig. 5. Spectra for the components detected by improved ICA in sample data set [10]. (a) For resolved spectra, and (b) for reference spectra.
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that the component D was most intense for the component
A. But the component D was the closest to the component
C in the chromatogram [10], but furthest away from com-
ponent A. Their contradict conclusion was a guess from the
remaining information after all other components were
drawn out.

In ICA, four spectra have been worked out simulta-
neously, and the component D no longer is influenced by
the error cumulated in the remaining information as shown
in Figs. 5 and 6. It is obvious that the component D is one
independent matter. Known from 454, 144/145, and 116/
118 (Da/e), the component D is likely to be an isomeride
of the component C, so they are difficult to be separated
by chromatogram. Furthermore, it can be found that the
reference spectrum in Fig. 53-b has included the impres-
sions of the components C and D, which may not be sep-
arated away (or the reference spectrum is a mixture of
the components C and D), by comparing the reference
spectrum for the component C in Fig. 53-b with the spectra
of the component C in Fig. 53-a and the component D in
Fig. 54-a. The above facts indicate that the results from
ICA are reasonable and the improved ICA method has
higher capability for separating mixed signals than the
SIMPLISMA method.

4. Conclusion

After the indeterminacies are eliminated, ICA is able to
separate and recognize the composite signals in the chemo-

metrics. An improved ICA has been presented for eliminat-
ing the threefold indeterminacy of ICA, and the accuracy
of ICA also is better than before. The improved ICA can
be directly used to separate the mixing signals in chemo-
metrics. As a typical example, a set of experimental
LC–MS data is processed without any prior knowledge
or specific limitation. The results show that the improved
ICA proposed in this paper can directly separate the mixed
signals in chemometrics, and it is simpler and more effective
than SIMPLISMA.
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